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The structure of non-linear cellular solutions 
to the Boussinesq equations 

By LEE A. SEGEL 
Rensselaer Polytechnic Institute, Troy, Now York 

(Roceived 13 May 1964) 

A model equation is constructed whose analysis reveals the same features, 
including stable hexagonal cells, as analysis of genuine approximate equations 
for the thermal convection problem. Taking advantage of the relative simplicity 
of the calculations an attempt is made to clarify certain procedures customarily 
used in non-linear stability theory; in particular, the basis for the usual formal 
expansions and the appropriateness of neglecting terms of fourth and higher 
order are discussed. It is demonstrated that a whole class of equations leads to 
hexagonal cells, thereby giving confidence that results on convection cells found 
elsewhere in idealized situations will remain valid when more realistic situations 
are studied. 

1. Introduction 
Papers by Palm (1960), Segel & Stuart (1962), and Segel (1965) have made 

progress in explaining the hexagonal cell shape frequently observed when a 
horizontal layer of fluid becomes unstable as a result of being heated from below. 
(We refer to these papers as I ,  11, and IV. The present paper is referred to as 
I11 in IV.) The key to this progress is the possibility of reducing the set of non- 
linear partial differential equations governing the physical problem to a set of 
non-linear ordinary differential equations called the amplitude equations. 
Unfortunately, considerable manipulation is necessary to do this [the original 
governing equations take nine lines to write down in I] so that the reader is apt 
to become discouraged before he reaches the principal arguments. It is not 
possible to circumvent this difficulty by taking the amplitude equations on faith 
because a general appreciation of how these equations are derived is required for 
an understanding of various arguments in IV. 

We have therefore thought it advisable to analyse a simple ‘model equation’ 
that retains to a high degree the characteristics of the physical problem under 
investigation. The analysis is carried out by a successive-approximation method 
which, while in essence only a reformulation of the formal series-expansion 
method customarily used, has the advantage of leading more naturally to the 
amplitude equations. We discuss in detail why it is appropriate to neglect fourth- 
and higher-order terms in these equations, a point which frequently seems not 
fully appreciated. 

I n  order that they should have equilibrium solutions corresponding to 
hexagonal cells, the amplitude equations must have coefficients which satisfy 
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certain relations. It was shown in I and 11, for amplitude equations correspond- 
ing to the Boussinesq equations with a certain law of viscosity variation and 
‘ free-free ’ boundary conditions, that these relations are satisfied. The question 
arises as to whether this is an accidental consequence of the various particular 
assumptions made or whether certain general features of the full governing 
equations are responsible for the behaviour of their solutions. That the latter is 
true is indicated by the success of the model equation in reproducing the qualita- 
tive features of the full problem. The investigation of § 4 confirms that certain 
overall properties of the governing partial differential equations are sufficient 
t o  insure the presence of hexagonal equilibrium points. (A by-product of this 
investigation is the fairly easy extension of the two-disturbance analysis of I and 
I1 to a six-disturbance analysis in IV. Otherwise, such an extension would be 
very tedious.) We therefore have reason to believe that the main conclusions of 
I, 11, and IV will be unaltered when more accurate equations and boundary 
conditions are studied. This has been confirmed by Davis (1964) who used the 
results of 0 4. 

2. Analysis of the model equation 
Burgers (much of whose work is summarized in Burgers 1948) was probably 

the first to exploit the use of a model equation in fluid mechanics. His study of 
various simplified versions of the Navier-Stokes equations gives a clear qualita- 
tive picture, relatively free of computational obscurities, of many phenomena 
which must appear in the turbulent motion of actual fluids. Hopf (1950) has 
been able to characterize rigorously the behaviour of simple model ‘flows’ as 
the ‘viscosity ’ tends to zero. Several authors have investigated, largely numeric- 
ally, sets of non-linear partial differential equations representing very highly 
simplified models of meteorological flows. One of the most interesting of these 
studies is that of Lorenz (1963). Finally, just as the present work was completed 
the author learned that Eckhaus (1962) has illustrated his approach to non-linear 
stability analyses on a model equation. One of our goals is to illustrate a non- 
linear stability analysis on a model equation, but we also seek fuller physical 
understanding of thermal convection so, unlike Eckhaus, we have incorporated 
into our model features analogous to the variation of viscosity with temperature 
and the ambiguity of horizontal structure which are essential to a discussion of 
the preferred pattern for cellular thermal convection. J. T. Stuart has independ- 
ently made various unpublished calculations using a similar model. 

We consider the following model equation for W(x,  y, z ,  t )  when 0 < z < 1 : 

L( W )  - N (  W) = 0, (1) 

L ( W )  G -?l$+A3W+2bcosn~ W-SA,W, (2) 

N ( W )  _= ( @ w z z .  (3) 

[S is a positive constant, b is a constant whose absolute value is small compared 
to unity, AW = Al W + W,, and AIW = Ti;. + IV,,]. We impose the boundary 
conditions 

W = W,, = ?.t;,,, = 0 at z = 0 , l ;  TY bounded as x2+y2-+co. (4) 
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We do not impose initial conditions because our interest will be concentrated on 
steady solutions to (4) and certain time-dependent transitions from one such 
solution to another. 

We are thinking of the following analogies with the thermal convection 
problem: x and y are the ‘horizontal co-ordinates’ and z is the ‘vertical co- 
ordinate’, W is the ‘vertical velocity’, S is the ‘Rayleigh number’ which is 
slowly increased until instability sets in, and b is the dimensionless measure of 
‘viscosity variation with temperature ’ whose presence gives rise to terms which 
play a central role in I, 11, and IV. 

The model equation and boundary conditions have a solution W = 0. As a 
first step in a stability analysis of this solution we neglect non-linear terms and 
look for a small perturbation W, which satisfies L(W,) = 0. Seeking a ‘normal 
mode’ solution to this equation of linear stability theory we are led to 

(5) I W,(x, y, z, t )  = exp (st)  cos WLX COB ny g(z), 

g(z)  = A,sin7r~+bA,sin37rz+0(b2), 

where 6 ,  m, n, A,, and A ,  are constants. IK already satisfies the homogeneous 
boundary conditions; an eigenvalue equation comes from satisfying L(T$;) = 0 
by setting the respective coefficients of s inm and sin 2712 equal to zero. I n  the 
resulting pair of homogeneous equations for A ,  and A ,  we require that the 
determinant of the coefficients be zero, to avoid the trivial solution A ,  = A ,  = 0, 
and find 

(6) 1 6 = ~ ~ 2 ~ 2 - ~ 6 ( ~ 2 +  1 ) 3 + b 2 ~ ( 4 + 0 ( b 4 ) ,  

~ - 1  = +[(a2 + 413 - (a2 + 1131. 

The x and y wave-numbers m and n occur here only in the overall wave-number a, 
defined by n2a2 E m2+n2, since x and y appear only in the combination 
a2/ax2 + a2/ay2. When 6 = 0 (the marginal case dividing stability from instability) 

(7 )  
we obtain 

The minimum value of #,(a) occurs a t  the critical overall wave-number a, 
given by 

giving for S,, the minimum critical value of #,(a), 

X = A’,(a) = r4(a2+ 1)3a-2 - l i ’b2~-2a-2+O(b4) .  

(8) 

S, #,(a,.) = ‘$774- 0 . 0 2 3 ~ - * 6 ~  + O(b4) .  (9) 

= 0.5 - 0 * 0 0 3 3 ~ - ~ ~ b ~ +  O(b4) ,  

The curve of marginal stability is given in figure 1 ; this curve is virtually the same 
as the corresponding curve found in the linearized theory of cellular convection. 
The O(b2)  decrease of a, and S, found here is also found for the corresponding 
quantities calculated from the full equations. Finally, the two useful relation- 

(10) 
ships 

are easily derived. 
We turn now to the complete non-linear equation and attempt to find solutions 

which are small for all time. The most natural approach is to take a linear-theory 
solution as a first approximation W, and to find further approximations using 
L(ITn) = N(IK-,) .  This will not lead to solutions of the desired type, however, for 

G = n’a’(S - X,.), 8, = KAl,  
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if W, - exp (d), then 1% N exp 2et, etc., and the ratio of the (n + 1)st approxima- 
tion to the nth has the undesirable property of becoming indefinitely large as time 
increases, so at no stage do we obtain an approximation uniformly valid for 
-a < t < 00. The ‘natural’ approach can be made satisfactory by means of 
certain special devices, but a referee has pointed out that a straightforward 
procedure results from rewriting the basic equation as 

9( W )  = A( W), 

I 
I 

I 

I 
I 

1 Stable: E c 0 
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L3(W2) =d(W, )  = [Y'-n2a2(S-bSc) Y ]  cos ~-ncrxcos&rayg(z) 
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and S, is the same as the linear theory result (9), with b = 0. W, then satisfies 

+[Z'-~2a2(X-S,)Z]~~~-/rayg(z)+ @ ( x , ~ , t )  G(z) ,  
4 

m=O 
where G(z)  = - 2n3sin 2nz, @ = $2 = @,; 

0, = $Y2+322, 0, EE 0, 

= $ Y2 cos nay + Y Z  cos q n a x  cos +nay, 

B3 = 

Q4 = $ Y2 cos J3 TUX cos ITWJ + $ 2 2  cos 2nay. i Y2 cos J3 ~ C Z X  + YZ cos ~ - - ~ T C C X  cos $nay, 

[Note that all terms in Om have over-all wave-number Jm a.] 
As 9 is time-independent and has constant coefficients, W, is easily seen to 

(15) 

if terms proportional to solutions of the homogeneous problem are removed by 

(16) 
taking 

Note that in (15) we have added W,, the appropriate solution of the homogeneous 
equation, to a particular solution of 9(W2) = d ( W l ) .  Note also that, from (16), 
if we stop at this stage then Y = 2 = exp (e t )  where the value of E. is in agreement 
with our earlier linear theory result (10). To find W, we compute d ( W , )  which has 
the same linear and quadratic terms in Y and 2 as d ( W l ) ,  fourth-order terms 
which will be seen to be negligible, and third-order terms among which are 

i 
be given by 4 

w,= G x Dm@,+w,, 
na=O 

Dkl = - (mnzaz + 4n2), + mn2a2Sc, 

Y' = € Y ,  2' = €2, € = n".."(S-S,). 

(R  Y 3  + P YZ2)  cos g'&ax cos &nay sin n z  

( BE' Y2Z + R, Z 3 )  cos nay sin m, 

(17a) 

(17 b)  and 

where the three constants 

(18) I R = - &nG (40, + 2 0 ,  + 20,  + D4), 
P = - & 7 ~ 6 ( 0 ~ + 0 ~ + 0 ~ ) ,  R, = -4~6(211,+D4),  

are positive at least for (S-rS,(a)l small, i.e. for e small. Expressions (17a, b )  are 
further terms proportional to eigenfunctions of 9. We will call such terms 
replicating terms. At any stage in the iteration, the net coefficient of the repli- 
cating terms must be zero. This is because of the well known fact that if A is 
a self-adjoint linear operator [differential operator plus boundary conditions] 
the inhomogeneous equation A($)  = P will have a solution only if F is ortho- 
gonal to the solution ?I? of A(Y) = 0. I n  computing W,, the requirement that 
the coefficients of the replicating terms vanish yields 

Y' = eY-RY3-PYZ2, Z' = B Z - ~ P Y ~ Z - R ~ Z ~ .  (19) 
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The main ideas needed in the successive approximations method having been 

(i) A given approximation Wn is found from the previous approximation 
presented, we will summarize the procedure. 

TVn-, by solving the linear partial differential equation 

9(Wn) = d(W-1)- (20) 

(ii) The method of undetermined coefficients gives particular solutions of (20) 
corresponding to terms in JI whose (x, y, x )  dependence is different from the 
(x, y, z )  dependence of the terms in the first (linearized) approximation Hi. 

(iii) A term in d, say 

C[Ai(t)]P [Ak(t)]* cos mx cos ny g(x ) ,  

whose (x, y, x )  dependence as the same as a term 

A,(t) cos mx cos nyg(x) 

in the first approximation W, requires the presence of a term - CAY A4, in the 
ordinary differential equation governing A,(t) : 

A: = sAi+ ...- CAPAg .... 

In  this manner the original non-linear partial differential equation is reduced 
to a set of non-linear ordinary differential equations for the amplitude functions 
A,(t). Let us call these the amplitude equations. Much is now known about sets 
of non-linear ordinary differential equations so that this approach reduces the 
original problem to a tractable state while retaining its non-linear character. 
Since the qualitative behaviour of the original equation is governed by the 
amplitude equations, the rule by which these equations are formulated is very 
important. This is given in (iii) above and will be termed amplitude modi;fication 
through replication since the linearized amplitude equation A’ = sA is modified 
through the presence of replicating higher-order terms. (It was thought advisable 
in this special context to use the word ‘replication’, rather than more common 
synonyms like ‘repetition’ or ‘reproduction’. A term making use of the word 
‘resonance’ was not used since resonance is usually associated with large ampli- 
tudes while in the case considered here, for example, third-order replication will be 
seen to cause the equilibration of solutions which grow without bound according 
to linear theory.) 

Non-linear analyses in previous papers have not used the successive-approxi- 
mation method presented here, but have formally expanded the solution in a 
Fourier series with time-varying coefficients, which in turn are expressed as 
series in powers of the several time-varying amplitudes of the linear disturbance 
modes (Stuart 196 1) .  A successive-approximation procedure has always been 
the implicit basis for choosing the correct power-series expansions of the Fourier 
coefficients so it has been thought worthwhile to present this procedure explicitly. 
Furthermore, the author has found a successive-approximation analysis of a 
model equation the swiftest way to give to those unfamiliar with non-linear 
stability theory a reasonably secure understanding of its pivotal feature, ampli- 
tude modification through replication. 
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The formal expansion and successive-approximation procedures are alterna- 
tive approaches to similar, but not identical, expansions. For example, the 
successive-approximation procedure yields a term 

- [ - 64n6(a2 + 1)3 + 4n2a2Xc]-1 n3Z2 cos 2nay sin 27rz 

in TI’, [see (15)] but the corresponding term according to the formal expansion 
method turns out to be 

- [ - 2s - 64n6(a2  + 1)3 + d7r2a2X]-17r3Z2 cos 2nay sin 2nz 

or, using (lo),  

- [ - 647r6(a2 + 1)3 + 27r2x2(X + S,)] n3Z2 cos Bnay sin 27rz. 

The corresponding terms differ by an O(iS- X,) or ‘higher-order’ amount, which 
is not alarming since although there is presumably a unique solution of the type 
sought, there is not a unique nth approximation to this solution. There is no 
unique way to set up the successive-approximation procedure. The iteration 

( - E + A3 - &A,) W, = (a/at - 6 )  W,-1 + +( Wi-l)zzz, 

for example, gives uniformly valid approximations different from those already 
mentioned. Indeed the original iteration procedure L(W,) = N(W,-J is a 
possible one but was discarded because it led to non-uniformly-valid approxima- 
tions containing powers of exp(et) rather than powers of quantities like the 
solution of (19) with I’ = 0, i.e. 

[eC @€I/(  1 + R,C eze1)]4, G an arbitrary constant, 

generated by 9( M;) = d( ELpl). The different iteration procedures correspond 
to different arrangements of an infinite-series solution. The formal expansion 
method and our iteration procedure (1 1) both lead to approximations uniformly 
valid in time, but these different approximations may be of varying effectiveness 
as functions of X. The results of (1 1) are closely related to expansions in powers of 
8 - X, like the steady-state solutions of the Malkus-Veronis type discussed in IV, 
but there is evidence that the formal expansion method produces expansions 
more nearly like those in powers of (8 - S,)/S shown superior by Kuo (1961). 

For simplicity in exposition we set b = 0 in deriving the amplitude equations 
(19). The effect of a non-zero b (analogous to a non-zero variation of viscosity 
with temperature) is to introduce second-order terms into (19). With b + 0, 
g(z) in (12) becomes 

sin n-z + b l i  sin Bn-2 + O(b2) 
so U ( z )  of ( 1 4 )  now is 

G(z)  = - 27r3 sin 27rz + +7r3 bK (sin z-z - 27 sin 3mz) + O( b2) ,  

which can be written G(z )  F -++bKg(z) +gl(z), 

where g,(z) is orthogonal to g(z) ,  the function giving the linear-theory 
z-dependence : 

g,(z) dz = o+ O(b2).  
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With b = 0, the (x, y) dependence of the linear term is replicated by the terms 
in (13) but there is no x-replication since sin2nx is orthogonal to sinrz. With 
b + 0,  as we have just shown, there is z-replication due to the presence of the g(z )  
term in the expression for G(x). Because of this second-order replication, if we 
write 

a = -$r3bK, 

the amplitude equations now read 

Y’ = eY-aY2-RY3-PY22, (21) 

(22) 

There are also O(b) corrections to R, R, and P, but these can be neglected. 
Equations (21) and ( 2 2 )  are identical with those discussed completely in I1 so 

all the results derived there are true here. I n  particular there exist hexagonal 
equilibrium points (where Y = & 2 2 )  which are stable when e is sufficiently small. 
[Note that although the expressions, in terms of the basic parameters of the 
problem, of the coefficients e, a, R, R, and P are different in the two cases, 
(18) shows that the vital relation P = 4R- R, holds here as well as in 11.1 

A word might now be said about the choice of the model equation. Aside from 
the quantity proportional to 6 ,  the linear terms were chosen so that the neutral 
stability curve for B h a r d  cells would be reproduced. The term 2b cos nz W was 
added to model the effect of viscosity variation with temperature. Examination 
of the actual non-linear terms [cf. (30)] indicated that their effect would be 
mirrored by ( W2)z  but calculations showed that the additional two z-differentia- 
tions were necessary. Otherwise second-order terms in the amplitude equations 
would not appear, even for non-zero b. 

Finally, we note that the linearized model equation is self-adjoint but the 
original linearized equation [I, equation (5. l)] is not. (The non-self-adjointness 
occurs because of the variation of viscosity with temperature and is connected 
only with z-differentiations.) When the linearized equation is non-self-adjoint 
the successive approximations procedure goes through just as before except 
that replicating terms are those whose (z, y, z )  dependence is the same as that of 
the solution to the adjoint of the linearized problem. 

2’ = tZ - Y 2  - R,Z3 - BP Y22. 

3. Comments on the validity of truncating the amplitude equations 
We have implicitly assumed that correct qualitative behaviour is obtained if 

terms through those of third order are kept in the amplitude equations. To see 
that this is so, we multiply equation (21) by Y and equation ( 2 2 )  by 2, obtaining 
the energy-type equations 

( 2 3 )  I ($Y2)’ = B Y ~ - c L Y ~ Z -  Y2(RY2+PZ2), 

( i 2 2 ) ’  = € 2 2 -  &UY”--22(~PY2+Rl22). 

The highest-order terms on the right-hand side are clearly stabilizing as they 
cause a decrease in the magnitudes of Y and 2. (These highest-order terms in 
( 2 3 )  are fourth order, but they arise from third-order terms in the amplitude 
equations.) The third-order terms in (23) are stabilizing if a 2  > 0 but 
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destabilizing if a 2  < 0 so that regardless of the sign of a these terms will exert 
a destabilizing influence in half of the ( Y ,  2)-(phase) plane. The lowest-order 
terms are stabilizing if E < 0 and destabilizing if E > 0, as predicted by linear 
stability theory. Consequently, if linear theory predicts instability (e > 0) we 
must take into consideration third-order terms in the amplitude equations 
(fourth-order terms in (23)) or else some solutions will grow without bound, 
thereby violating the assumptions of our theory that Y and 2 are small for all 
time. If linear theory predicts stability ( E  < 0) it  is consistent to neglect all non- 
linear terms if the initial values of Y and 2 are sufficiently small: the correct 
qualitative prediction of decay with time results. On the other hand, if Y 2 2  is 
initially sufficiently large and Z has the appropriate sign then second-order 
theory predicts (inconsistently with its perturbation nature) that  these disturb- 
ances will grow without bound. Once again, if third-order terms are considered 
we can obtain a consistent picture of instabilities due to finite-amplitude effects 
growing to an equilibrium amplitude but still remaining uniformly small for 
all time. Computation of the equilibrium values of I' and 2 (from setting 
Y' = 2' = 0) shows that Y ( t )  and Z ( t )  will in fact be small for all time if €4 and 
a are small. We must therefore make these assumptions if the perturbation 
method is to make sense. All our remarks apply to the Boussinesq amplitude 
equations and so provide the reasons for the physical assumptions in I, I1 and I V  
that the variation of viscosity with temperature is slight and that the Rayleigh 
number is close to its critical value. 

It may be asked why fifth- and higher-order terms in (23) do not contribute many 
other equilibrium points, and also destabilizing terms outweighing the fourth- 
order stabilizing terms. This may well be the case for large amplitude distur- 
bances but for I Yl < 1 and 121 < 1 higher-order terms are negligible. The situation 
is illustrated in figure 2 by comparing possible solutions to the simple differential 
equation dyldt = sin y and the approximate equation dy/dt = y - &y3 obtained by 
truncating the Maclaurin series of sin y.  We also mention a discussion by Stuart 
(1961, p. 139) whichindicates that all the terms kept in (23), linear and non-linear, 
are of the same order of magnitude while those neglected are of higher order. 

Two further remarks are necessary. 
(i) As in Segel & Stuart (1962), hexagonal solutions to (21) and (22) are stable 

when 0 < e < E* and unstable when t: > e*. where 

t:* U ~ Q - ~ ( ~ R + R , ) ,  Q 2(2R-Rl). 

The slight lack of precision in the values of R and R,, due to the possible inclusion 
therein of higher-order quantities, slightly effects the exact value of t: dividing 
stable from unstable hexagons but does not alter the fact that such an E exists. 
What happens to hexagonal solutions to (21) and ( 2 2 )  when e = e* can be com- 
puted, but the result will generally be altered by higher-order terms-which is 
immaterial, as the fact that hexagons become unstable, and not exactly how 
they become so, is what interests us. We have here an example of how neither 
the neglect of fourth-order terms in the amplitude equations, nor the slight lack 
of precision in the values of the terms kept, affects the predicted behaviour of 
solutions to the governing partial differential equations. 

33 Fluid Mrch. 51 
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(ii) A point which is a stable node in the (Y,Z)-plane does not necessarily 
represent a stable equilibrium point of the governing partial differential equa- 
tion: disturbances having a different geometric dependence from those considered 
may render the solution unstable. 

FIGURE 2.  An illustration of the correct qualitative behaviour obtained by neglecting 
higher-order terms in a non-linear differential equation. (Solid horizontal lines indicate 
stable equilibrium solutions ; dotted horizontal lines indicate unstable equilibrium solu- 
tions.) (a )  Full equation dy/dt = sin y. ( b )  Truncated equation dy/dt = y- +y3. R: region 
of correct qualitative behaviour. 

4. Equation structure sufficient for the appearance of hexagonal cells 
The previous sections might interest those with only a passing familiarity with 

non-linear analyses of cellular convection, but this section is meant for those with 
a detailed interest in the subject. The model equation was constructed with the 
aid of what seemed a t  the time to be an adequate understanding of the important 
general features of the Boussinesq equations. Further reflexion made it clear that 
fairly careful investigation would be necessary to uncover the reason why anaIysis 
of any sensible model gives rise to amplitude equations whose coefficients have 
just the proper relationships to insure the presence of hexagonal cells. This 
investigation is the subject of the present section. 

To avoid repetition we concentrate on one representative non-linear portion 
of the Boussinesq equations; the other non-linear terms, including those arising 
from the temperature-dependent viscosity, can be dealt with in exactly the same 
way. Denoting the actual velocity components by (u, v, w) = V, we may write 
(see I) 

Y(w) = AQ(u, V ,  ui) + . . . , (24) 
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where 9 is a certain linear operator, 

(U, W )  = (V . V) (u, v ,  w), (25) 

and . . . in (24) indicates the presence of other non-linear terms plus linear terms 
(containing t-derivatives, or proportional to 9 - g,,) analogous to those in -4 
above. Furthermore 

We will consider the non-linear modification of the solution associated with 
a vertical velocity w which according to linear theory has the form 

A,u = - w ~ , ,  A1v = - W  YZ' (26) 

U'l = $4k, Y, t ) f  (4, 
Al# = - 712a". where Q satisfies 

The appropriate solutions to (26) turn out to be the simplest 

Using these results of linear theory we proceed to the next approximation, 
which requires solving 

=.P(W~) = AQ(ul, vl, ~ 1 )  + . . ., 
where 

We note here that 

which is why it is unnecessary in our calculations to retain non-linear terms 
in (36). We now discuss the following lemma, to be proved later: 

As far as the (x, y)-dependence is  concerned the coe@cients of the second-order 
replicating terms in AQ have the same ratio as the coqflcients of the second-order 
replicating terms in q52. 

Q(ul, vl, wl)  = &dA,{[(kf ')2 - kf 2] [& + $43 + [kg" - f 21 $42)/dz. 

u,(.l, 2'1, q) - T$(u,, v1, w1) = 0, 

(30) 

To see the significance of this, let 

$4 = Y(t)  cos 9- nax cos $nay + Z( t )  cos ray, (31) 

the case considered above and in I and 11. From the expression for qP in (13) and 
(14), the replicating terms in $4z then are. according to the lemma, 

and gC Y2 cos ray f ( z )  C Y Z  cos g$ m x  cos $ m y  f ( z ) ,  (32) 

where the constant C depends on the nature of the z dependence. The result of 
(32) that the Z'Z coefficient is four times the Y2 coefficient leads to the fact that 
the I'Z coefficient in the T'' amplitude equation (derived from the Boussinesq 
equations) is four times the Y2 coefficient in the 2' amplitude equation. This 
fact about second-order coefficients in the amplitude equations and similar 
facts which hold for the third-order coefficients ensure that there are hexagonal 
equilibrium points [where T' = 

To prove the lemma, we refer to (30) and consider the term in Q(ul ,v l ,wI)  
proportional to Al#z. (We emphasize that for our purposes AQ is completely 
representative of the non-linear terms; no new ideas are required for dealing 
with the other terms and the results are unchanged.) satisfies what we 

221. 

23-2 
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can call Property P :  The (x, y )  dependence of each term is the same as in q52 and, 
the operator A, multiplying each term having the same overall wave-number by 
the same constant, coeficient ratios of terms having the same overall wave-number 
ure preserved but coeficient ratios of terms having different overall wace-numbers 
are altered. For example, considering three terms from (14), 

A,[+ Y2 cos J3 nax + Y2 cos nay + YZ cos q$ nax cos $nay] 

= - 3n2a2[+ Y2 cos 4 3  nax] - .2.2[+ I’2 cos nay  + Y Z  cos q- 77ax cos ;nay]. 

The coefficient ratio of the last two terms, YZ/iY2, is preserved; that of the first 
two terms is altered. Terms in which replicate those in q5 must all have 
overall wave-number a, as q5 does, so their coefficient ratios are the same as for 
the corresponding terms in $2. This proves the lemma for the term in Q propor- 
tional to A,q52. We deal similarly with the other term, proportional to q5: + q5:, 

from which it is clear that q5: + q5; has property P. As operation by A preserves 
property P,  the lemma is true. Indeed, it is clear that AQ itself has property P. 

It is one of the important general features of our solution to the Boussinesq 
equations that the z-dependence is separated from the (x, y)-dependence. For 
the amplitude equations to have the second-order terms whose role is so 
important in I, 11, and IV, it  is necessary that the first-order z-dependence be 
replicated at second order. Without variation of viscosity with temperature or 
a similar asymmetry-producing mechanism this cannot occur. [Referring to 
(30), iff is even with respect to the centre of the layer, z = 8, then (f 2)’, (f f ”)’, 
[( f ’)2]’, being odd cannot replicate f. That the presence of second-order terms in 
the amplitude equations requires vertical asymmetry was deduced from other 
considerations by Veronis 196 1 .] 

We proceed to a discussion of the third-order terms in the amplitude equations, 
using the function q5 of (31). An O(b) correction to the third-order coefficients is 
negligible, so from here on we set b = 0 and therefore can take f (x) = sin nz. We 
must find the complete second-order solution, which has the form 

zu2 = $(x, y, t )  sin 7 ~ x - t  @(r, y ,  t )  sin 2nz, 

u2 = nkq5, cos n.2 + 
v2 = nkq5, cos 7Tz + (D, cos Bnz, 

cos 2n.2, 
- 

where k is given in (39), 
4 

n=O 
@ =  s cn(Dp, (33 )  

and 6 is the same expression with the constants C, replaced by different con- 
stants e,. The form of @ is obtained at once from the expression for $2 in (13) 
and (14), and the fact that, except for the replicating terms which are dealt with 
separately, second-order terms in w are found from the undetermined coefficient 
solutions to a differential equation whose right-hand side, being made up of AQ 
and other terms behaving in the same way, has property P. [Co = 0 in (33) 
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because of the A, factor in (30), but C, =I= 0 when terms other than AQ are 
considered.] 

Proceeding to the third approximation, we now consider the solution to 
9(u i3 )  = AQ(u,, v2, w2) + . . . and look for third-order replication. A typical 
third-order term in AQ(u,, v,, w2) is A(A,T),  where 

T = [q5= @r + $vCDv] sin n z  = TI sin nz.  

Since we are only interested in replicating third-order terms, which have overall 
wave-number a, the identity 

A,( @$) = @A1 $ + q5Al @ + 2T’ 
becomes 

The contribution of T to the replicating third-order terms is therefore equal to 
sinnx times the product of 4 and a linear combination of the terms in @; the 
constants in CD must be altered due to the different effect of A, upon terms of 
different overall wave-numbers. Once again this behaviour is entirely typical 
not only of T but of all the non-linear terms: each replicating third-order term, 
and therefore the szm of all such terms, is given by a multiple of q5@ sin nz for some 
constants C, in CD. Computing $@ from (31) and (33) we find that the replicating 
terms are, for some constants Co, C,, C,, C,, 

- n2u2q5CD = - n2a2q5@ + $A, CD + 2T,, or TI = &$A, @. 

I’ cos 22 nax cos &nay[ Y2( Co + tCl + &C3 + $C4) + 2Zz(C, + C, + C,)] sin n z  

+ 2 cos nuy[ P ( C o  + C, + C,) + Z2(2Co + C,)] sin nz. 

With the abbreviations 

R = C,+&C,+~C,+@,, R, = 2C,,+C4, P = 2(Co+C,+C,), (34) 

a = coefficient of Y Z  in second-order term 

replicating cos nux cos 8n-a~~ f ( z ) ,  

the amplitude equations for F and Z are therefore identical with equations (21) 
and (22). The relation P = 4R-  R,, necessary and sufficient for the appearance 
of hexagonal equilibrium solutions, follows a t  once from (34). 

We have shown that the amplitude equations (21) and (22) will be the same for 
a large class of governing partial differential equations. Two important pro- 
perties of this class of equations, broadly stated, are: 

(i) in the solutions to the linearized equations, the (x, y)-dependence must be 
capable of being separated out into a function $ ( x ,  y) satisfying A, $ = - n2a2+; 

(ii) the non-linear terms must roughly be odd-order z-derivatives of squares 
of linear terms, but, because of (i), repeated appearance of powers of A and A, 
is permitted. 

The appearance and stability of hexagonal cells therefore depends on certain 
general characteristics of the relevant equations, not on their detailed form. 
When equations more accurate than those of I, 11, and IV, are considered- 
equations incorporating, for example, more realistic boundary conditions, a less 
special law of viscosity variation, and a non-constant thermal conductivity-we 
now have good reason to hope that the qualitative conclusions of I, 11, and I V  
will not be appreciably changed. For confirmation, see Davis (1964). 
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